网易大数据平台的Spark技术实践-技术方案

时间:14-12-19 栏目:大数据 作者:爱说云网 评论:0 点击: 1,406 次

网易的实时计算需求

对于大多数的大数据而言,实时性是其所应具备的重要属性,信息的到达和获取应满足实时性的要求,而信息的价值需在其到达那刻展现才能利益最大化,例如电商网站,网站推荐系统期望能实时根据顾客的点击行为分析其购买意愿,做到精准营销。

实时计算指针对只读(Read Only)数据进行即时数据的获取和计算,也可以成为在线计算,在线计算的实时级别分为三类:Real-Time(msec/sec级)、Near Real-Time(min/hours)以及Batch(days)。 在批处理方面,MapReduce(MR)已经证明其为最有效的工具,随着MR的开源实现Hadoop为代表的大数据分析技术的普及,其在大处理方面的能 力已经得到认可,但是它更适用于对集群上大数据的批处理,并不适用于实时处理大规模流数据。为了满足实时性的要求,基于数据仓库所构建的流计算和实时性计 算框架也不断涌现,相关围绕MR的实时性优化技术也蓬勃发展,比较代表性的系统Google Dremel、Twitter Storm以及Yahoo S4等。

大数据的应用类型主要分为:批处理(Batch Processing)和流处理(Stream Processing)两方面。批处理是先存储后处理(Store-Then-Process),流处理是直接处理(Straight-Through- Processing),为提高商业智能的反映时间,目前广泛所采取的大数据处理框架,例如MR和Dryad所面向的主要是大规模数据分析,以批处理计算 为主,其实时性需求得不到满足。常用的应用有在线推荐、网页点击分析、传感网络、交通分析以及金融中的高频交易,对实时分析处理(Real Time Analytic Processing, RTAP)的需求越来显著,网易公司作为国内最大的门户网站之一,实时性也是公司目前互联网产品所应具备的重要属性。

网易大数据Spark技术应用

Spark技术代表未来数据处理的新方向,Spark是UC Berkeley AMP lab开源的类Hadoop MapReduce的通用并行计算框架,Spark基于MapReduce实现分布式计算,拥有Hadoop MapReduce具有的优点。不同于MapReduce的是,Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好 地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

在网易大数据平台中,数据存储在HDFS之后,提供Hive的数据仓库计算和查询,要提高数据处理的性能并达到实时级别,网易公司采用的是 Impala和Shark结合的混合实时技术。Cloudera Impala是基于Hadoop的实时检索引擎开源项目,其效率比Hive提高3-90倍,其本质是Google Dremel的模仿,但在SQL功能上青出于蓝胜于蓝。Shark是基于Spark的SQL实现,Shark可以比 Hive 快40倍(其论文所描述), 如果执行机器学习程序,可以快 25倍,并完全和Hive兼容。

图1和图2分别测试的计算能力和实时查询性能经过初步测试,在网易的实时计算平台,在大数据实时查询系统中,Impala在数据处理方面的速度可以 相比HIVE达到3倍到30倍的加速比,Shark可以相比HIVE达到 1.5到15倍的加速比,相比较Impala和Shark引擎,通常Impala会比Shark快一倍,这里可能会引出思考,既然Impala实时性如此 好,为何还需要Shark呢?

在设计大数据平台的时候,我们发现Impala性能不错,但是其对旧Hive的数据不兼容,因为目前的大数据应用中很多都是Hive的组织方式,而 Shark可以完全兼容旧的数据,因此在目前的数据结构中必须采用混合的数据处理模式。Hive和Impala会协同存在一段时间, Hive主要为Predefined Queries,并主要处理批处理相关作业,而Impala则处理交互的查询(AD-HOC Queries),使得大数据系统既支持OLTP,也支持OLAP,以达到实时分析处理(Real Time Analytic Processing, RTAP)的水平。

图1 网易大数据平台性能测试(Count/Sum/Avg操作)

图2网易大数据平台性能测试(Join/Ad-hoc查询操作)

总结

如果要评价2012到2013年度IT业界热词,非“大数据”一词莫属。ROI(Return On Investment)投资回报率已经演化为Return On Information,信息的回报率成为互联网公司的一个重要指标,如果所掌握的海量数据都是一堆“垃圾”,没有金矿去挖掘,那大数据也无从谈起,而提 高ROI的一个重要属性就是实时性,提高数据的反应时间需要技术做支撑和保障,网易作为中国顶尖的互联网公司之一,在大数据方面也是最早的先行者,特别实 时计算技术方面,公司很早就开始采用最新的技术来提供服务,例如Impala和Shark等,不难发现,网易的大数据系统可以灵活的选择计算实时引擎,总 体上系统在实时处理方面的能力可以提升2到15倍,这对于提升公司的生产效率有显著成效,在后续的工作中期望可以进一步提升实时级别,目前只能做到秒级, 能否达到毫秒级甚至微秒级别是将来的一个研发方向,总之对于海量数据计算、实时性方面有强烈需求的公司应用落地Spark是很好的选择。

参考资料

[1] Storm Distributed and fault-tolerant real time computation

[2] Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari. S4: Distributed Stream Computing Platform. 2010 IEEE International Conference on Data Mining Workshops (ICDMW).

[3] Cloudera Impala https://github.com/cloudera/impala

Reynold S. Xin, Josh Rosen, et al. Shark: SQL and rich analytics at scale. SIGMOD Conference 2013.

相关文章

BDTC 2014讲义尝鲜:15家机构论道大数据实战...
views 1858
2014中国大数据技术大会已圆满落幕,这里为大家送上本届大会的第一手干货,分别来自Hortonworks、IBM、Intel、VMware、eBay、阿里、腾讯、网易、搜狐、携程等机构。 2014年12月12-14日,作为大数据领域最具影响、规模最大的IT盛会——2014中国大数据技术大会暨第二届C...
在Docker容器之间拷贝数据:原理与操作示例...
views 1764
ocker容器可以类比成一个目录,它可以将一个应用程序运行时所依赖的所有环境(注:此应用依赖的其他的服务或程序等)打包在一起运行;同时可 以随意的对它进行“启动”、“停止”、“移动”或者“删除”等操作。Docker容器在Linux的命名空间(Namespace)机制下被激活,这样就 可以使得运行在同...
亚信张灏:打通各行业数据壁垒 让大数据变现畅通无阻...
views 1924
大数据时代已经到来,企业所拥有的数据日益激增,如何更好地挖掘数据价值,进而指导业务发展,产生更高效益,成为企业关注的焦点和追求的方向。2014中关村大数据日上,亚信提出了大数据资产的概念,及帮助合作伙伴提升大数据资产价值的最佳实践。借此机会,CSDN专访了亚信大数据事业部总经理张灏,请他分享了亚信对...
阿里云与河北省共建智慧河北 打造统一数字化服务平台...
views 2053
6月27日上午,河北省人民政府与阿里巴巴集团达成战略合作。河北省将阿里云计算纳入政府集中采购目录。阿里云计算为河北省电子政务、城市管理及民生服务等领域提供统一的数字化服务平台,共同建设基于云计算、大数据与数字互联网的智慧河北。 便民服务方面,双方将结合河北省便民服务网,依托支付宝便民服务窗,推动河...
浅析大数据与云计算物联网等热点的关系...
views 1692
  大数据时代的到来,是全球知名咨询公司麦肯锡最早提出的,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” 近几年大数据一词的持续升温也带来了大数据泡沫的疑虑,大数据的前景与目前云计算、物联网...
大数据未来发展趋势预测
views 2728
大数据的世界正在稳步发展壮大。随着数据数量和种类的不断膨胀,读者都想知道接下来会发生什么。Sriram Mohan博士是罗斯豪曼理工学院计算机科学和软件工程的副教授。同时他还兼任着Avalon咨询公司大数据解决方案高级顾问一职。他融汇理论与实践于一身,他绝对是回答“2014年企业大数据发展趋势”的正...
Spark的现状与未来发展-技术方案-
views 1349
Spark的发展 对于一个具有相当技术门槛与复杂度的平台,Spark从诞生到正式版本的成熟,经历的时间如此之短,让人感到惊诧。2009年,Spark诞生于伯 克利大学AMPLab,最开初属于伯克利大学的研究性项目。它于2010年正式开源,并于2013年成为了Aparch基金项目,并于2014年成为...
云计算功能
views 1598
随着技术的进步,人类需要处理的数据业务也越来越多。无可争议的一件事是云计算功能是强大的,它可以有效地降低计算机硬件的投资,并降低信息服务的复杂性,节约人力物力。当云计算功能得到更好的发挥时,相信会有更多企业加入进来,使用云计算功能也将越来越方便。( 云计算的功能好处可以从以下几个方面看到。比如当用...

声明: 本文由( 爱说云网 )原创编译,转载请保留链接: 网易大数据平台的Spark技术实践-技术方案

网易大数据平台的Spark技术实践-技术方案:等您坐沙发呢!

发表评论


读者排行