网易大数据平台的Spark技术实践-技术方案

时间:14-12-19 栏目:大数据 作者:爱说云网 评论:0 点击: 1,194 次

网易的实时计算需求

对于大多数的大数据而言,实时性是其所应具备的重要属性,信息的到达和获取应满足实时性的要求,而信息的价值需在其到达那刻展现才能利益最大化,例如电商网站,网站推荐系统期望能实时根据顾客的点击行为分析其购买意愿,做到精准营销。

实时计算指针对只读(Read Only)数据进行即时数据的获取和计算,也可以成为在线计算,在线计算的实时级别分为三类:Real-Time(msec/sec级)、Near Real-Time(min/hours)以及Batch(days)。 在批处理方面,MapReduce(MR)已经证明其为最有效的工具,随着MR的开源实现Hadoop为代表的大数据分析技术的普及,其在大处理方面的能 力已经得到认可,但是它更适用于对集群上大数据的批处理,并不适用于实时处理大规模流数据。为了满足实时性的要求,基于数据仓库所构建的流计算和实时性计 算框架也不断涌现,相关围绕MR的实时性优化技术也蓬勃发展,比较代表性的系统Google Dremel、Twitter Storm以及Yahoo S4等。

大数据的应用类型主要分为:批处理(Batch Processing)和流处理(Stream Processing)两方面。批处理是先存储后处理(Store-Then-Process),流处理是直接处理(Straight-Through- Processing),为提高商业智能的反映时间,目前广泛所采取的大数据处理框架,例如MR和Dryad所面向的主要是大规模数据分析,以批处理计算 为主,其实时性需求得不到满足。常用的应用有在线推荐、网页点击分析、传感网络、交通分析以及金融中的高频交易,对实时分析处理(Real Time Analytic Processing, RTAP)的需求越来显著,网易公司作为国内最大的门户网站之一,实时性也是公司目前互联网产品所应具备的重要属性。

网易大数据Spark技术应用

Spark技术代表未来数据处理的新方向,Spark是UC Berkeley AMP lab开源的类Hadoop MapReduce的通用并行计算框架,Spark基于MapReduce实现分布式计算,拥有Hadoop MapReduce具有的优点。不同于MapReduce的是,Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好 地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

在网易大数据平台中,数据存储在HDFS之后,提供Hive的数据仓库计算和查询,要提高数据处理的性能并达到实时级别,网易公司采用的是 Impala和Shark结合的混合实时技术。Cloudera Impala是基于Hadoop的实时检索引擎开源项目,其效率比Hive提高3-90倍,其本质是Google Dremel的模仿,但在SQL功能上青出于蓝胜于蓝。Shark是基于Spark的SQL实现,Shark可以比 Hive 快40倍(其论文所描述), 如果执行机器学习程序,可以快 25倍,并完全和Hive兼容。

图1和图2分别测试的计算能力和实时查询性能经过初步测试,在网易的实时计算平台,在大数据实时查询系统中,Impala在数据处理方面的速度可以 相比HIVE达到3倍到30倍的加速比,Shark可以相比HIVE达到 1.5到15倍的加速比,相比较Impala和Shark引擎,通常Impala会比Shark快一倍,这里可能会引出思考,既然Impala实时性如此 好,为何还需要Shark呢?

在设计大数据平台的时候,我们发现Impala性能不错,但是其对旧Hive的数据不兼容,因为目前的大数据应用中很多都是Hive的组织方式,而 Shark可以完全兼容旧的数据,因此在目前的数据结构中必须采用混合的数据处理模式。Hive和Impala会协同存在一段时间, Hive主要为Predefined Queries,并主要处理批处理相关作业,而Impala则处理交互的查询(AD-HOC Queries),使得大数据系统既支持OLTP,也支持OLAP,以达到实时分析处理(Real Time Analytic Processing, RTAP)的水平。

图1 网易大数据平台性能测试(Count/Sum/Avg操作)

图2网易大数据平台性能测试(Join/Ad-hoc查询操作)

总结

如果要评价2012到2013年度IT业界热词,非“大数据”一词莫属。ROI(Return On Investment)投资回报率已经演化为Return On Information,信息的回报率成为互联网公司的一个重要指标,如果所掌握的海量数据都是一堆“垃圾”,没有金矿去挖掘,那大数据也无从谈起,而提 高ROI的一个重要属性就是实时性,提高数据的反应时间需要技术做支撑和保障,网易作为中国顶尖的互联网公司之一,在大数据方面也是最早的先行者,特别实 时计算技术方面,公司很早就开始采用最新的技术来提供服务,例如Impala和Shark等,不难发现,网易的大数据系统可以灵活的选择计算实时引擎,总 体上系统在实时处理方面的能力可以提升2到15倍,这对于提升公司的生产效率有显著成效,在后续的工作中期望可以进一步提升实时级别,目前只能做到秒级, 能否达到毫秒级甚至微秒级别是将来的一个研发方向,总之对于海量数据计算、实时性方面有强烈需求的公司应用落地Spark是很好的选择。

参考资料

[1] Storm Distributed and fault-tolerant real time computation

[2] Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari. S4: Distributed Stream Computing Platform. 2010 IEEE International Conference on Data Mining Workshops (ICDMW).

[3] Cloudera Impala https://github.com/cloudera/impala

Reynold S. Xin, Josh Rosen, et al. Shark: SQL and rich analytics at scale. SIGMOD Conference 2013.

相关文章

为什么社交网络中数据翻页技术复杂-技术方案...
views 1168
最近讨论的一个传统的问题,问题本身比较简单,针对key-list类型的数据,如何优化方案做到性能与成本的tradeoff。Key-list 在社交产品及面向用户的产品中非常普遍,如一个用户的好友关系 {“uid”:{1,2,3,4,5}},表示某个uid有1,2,3,4,5好友;一条微博下面的评论i...
IBM李永辉:从人工智能到大数据的终点...
views 1502
人工智能技术在大数据领域发挥的作用日益重要,IT技术人员对IBM Waston的兴趣也与日俱增。近日,IBM科技部的杰出工程师李永辉参加了 2014年中国大数据技术大会,并接受了CSDN云计算的专访,以Waston为例分析了人工智能技术的行业应用实践和前景。李永辉认为,通过结构化数据和非结构化数据的...
Big Data大数据正在改变生活.创造新生意...
views 1342
从个人电脑发明、网际网路到云端,电脑科技和人们的关系愈来愈紧密,每隔三、五年就会出现新概念,并且期待带来新商机。2012年开始,「Big Data」正成为这个备受瞩目的新概念、新机会。Big Data称为大数据、海量资料或巨量资料,其重要性不在于数据资料有多少,而是人们如何应用软硬体,从各种数据中找...
大数据拼精准 可否触动电商个性营销神经...
views 1128
今日之电商诸侯争霸,可谓火药味甚浓,更推进着产业前进步伐。古语有云:长袖善舞,多钱善贾,意指有所依靠,事情容易成功。随着大数据所爆发出的巨大潜力,在如今的互联网经济时代,玩电商的“有才有财”企业,正在用大数据思维与技术影响着企业业务决策和商业推广思路。可以预测的是,互联网平台大数据分析,正如利剑出鞘...
大数据平台核心竞争力:业务敏捷性,实时性,性能 – hadoop技术学习 (欢迎关注同名...
views 1769
最近在考虑新一年的架构的时候,我就在想一个大数据平台核心竞争力到底是什么?每个平台发展的阶段可能不太一样,所以所需要的核心竞争力不同。但是做架构,做设计的朋友一定要常常思考下你负责的平台到底核心竞争力是什么。 我们现在做的平台不是自用的,是销售给第三方。我觉得排在前三核心竞争力分别是:   1、业务...
谁在用阿里云?云计算用户须知10个问题...
views 1620
云计算喊了好几年了,笔者很好奇,到底什么样的用户在使用,以及这些用户在采购和使用云计算时是基于一种怎样的场景、需求和心态?   根据工信部电信研究院在其《云计算白皮书》(2014)中披露的统计数据。在全球排名前50万的网站中,约有2%采用了公共云服务,其中80%的网站采用了亚马逊和Rackspace...
Spark的现状与未来发展-技术方案-
views 1139
Spark的发展 对于一个具有相当技术门槛与复杂度的平台,Spark从诞生到正式版本的成熟,经历的时间如此之短,让人感到惊诧。2009年,Spark诞生于伯 克利大学AMPLab,最开初属于伯克利大学的研究性项目。它于2010年正式开源,并于2013年成为了Aparch基金项目,并于2014年成为...
大数据时代,科技走到了宗教尽头
views 1650
这是一个人人都言“大数据”的时代,然“大数据”存在于何处?影响于何处?难免,普通大众被席卷而来的“大数据”之潮迷乱了眼睛,搅乱了思绪。正是在这样的时刻,笔者认为尤为重要的是保有敬畏之心与清醒的思维,认识到“大数据”的局限性。 渗透时刻,无处不在的大数据 大数据可能是时下最吸引眼球的话题之一。从通过...

声明: 本文由( 爱说云网 )原创编译,转载请保留链接: 网易大数据平台的Spark技术实践-技术方案

网易大数据平台的Spark技术实践-技术方案:等您坐沙发呢!

发表评论


读者排行