Google后Hadoop时代的新“三驾马车”——Caffeine、Pregel、Dremel

时间:14-12-25 栏目:Google, 大数据 作者:爱说云网 评论:0 点击: 1,964 次

Google在2003年到2004年公布了关于GFS、 MapReduce和BigTable三篇技术论文,这也成为后来云计算发展的重要基石,如今Google在后Hadoop时代的新“三驾马车”—— Caffeine、Pregel、Dremel再一次影响着全球大数据技术的发展潮流。

Mike Olson是Hadoop运动背后的主要推动者,但这还远远不够,目前Google内部使用的大数据软件Dremel使大数据处理起来更加智能。

Mike Olson目前任职于世界上最热的软件专业公司——Cloudera(硅谷的创业企业),并担任Cloudera的首席执行官。Cloudera围绕开源 软件平台Hadoop发展自身的业务,开源软件平台Hadoop已经使得Google变身网络上最主导的力量。

预计到2016年Hadoop将会推动软件市场,并创造8.13亿美元的价值。不过Mike Olson表示这已经是老新闻了。

Hadoop的火爆要得益于Google在2003年底和2004年公布的两篇研究论文,其中一份描述了GFS(Google File System),GFS是一个可扩展的大型数据密集型应用的分布式文件系统,该文件系统可在廉价的硬件上运行,并具有可靠的容错能力,该文件系统可为用户提供极高的计算性能,而同时具备最小的硬件投资和运营成本。

另外一篇则描述了MapReduce,MapReduce 是一种处理大型及超大型数据集并生成相关执行的编程模型。其主要思想是从函数式编程语言里借来的,同时也包含了从矢量编程语言里借来的特性。基于 MapReduce编写的程序是在成千上万的普通PC机上被并行分布式自动执行的。8年后,Hadoop已经被广泛使用在网络上,并涉及数据分析和各类数 学运算任务。但Google却提出更好的技术。

在2009年,网络巨头开始使用新的技术取代GFS和MapReduce。Mike Olson表示“这些技术代表未来的趋势。如果你想知道大规模、高性能的数据处理基础设施的未来趋势如何,我建议你看看Google即将推出的研究论文”。

自Hadoop兴起以来,Google已经发布了三篇研究论文,主要阐述了基础设施如何支持庞大网络操作。其中一份详细描述了Caffeine,Caffeine主要为Google网络搜索引擎提供支持。

在Google采用Caffeine之前,Google使用MapReduce和分布式文件系统(如GFS)来构建搜索索引(从已知的Web页面索引 中)。在2010年,Google搜索引擎发生了重大变革。Google将其搜索迁移到新的软件平台,他们称之为“Caffeine”。Caffeine 是Google出自自身的设计,Caffeine使Google能够更迅速的添加新的链接(包括新闻报道以及博客文章等)到自身大规模的网站索引系统中, 相比于以往的系统,新系统可提供“50%新生”的搜索结果。

在本质上Caffeine丢弃MapReduce转而将索引放置在由Google开发的分布式数据库BigTable上。作为Google继GFS和 MapReduce两项创新后的又一项创新,其在设计用来针对海量数据处理情形下的管理结构型数据方面具有巨大的优势。这种海量数据可以定义为在云计算平 台中数千台普通服务器上PB级的数据。

另一篇介绍了Pregel,Pregel主要绘制大量网上信息之间关系的“图形数据库”。而最吸引人的一篇论文要属被称之为Dremel的工具。

点击查看大图

专注于大型数据中心规模软件平台的加利福尼亚伯克利分校计算机科学教授Armando Fox表示“如果你事先告诉我Dremel可以做什么,那么我不会相信你可以把它开发出来”。

Dremel是一种分析信息的方式,Dremel可跨越数千台服务器运行,允许“查询”大量的数据,如Web文档集合或数字图书馆,甚至是数以百万计的垃圾信息的数据描述。这类似于使用结构化查询语言分析传统关系数据库,这种方式在过去几十年被广泛使用在世界各地。

Google基础设施负责人Urs Hölzle表示“使用Dremel就好比你拥有类似SQL的语言,并可以无需任何编程的情况下只需将请求输入命令行中就可以很容易的制定即席查询和重复查询”。

区别在于Dremel可以在极快的速度处理网络规模的海量数据。据Google提交的文件显示你可以在几秒的时间处理PB级的数据查询。

目前Hadoop已经提供了在庞大数据集上运行类似SQL的查询工具(如Hadoop生态圈中的项目Pig和Hive)。但其会有一些延迟,例如当部署任 务时,可能需要几分钟的时间或者几小时的时间来执行任务,虽然可以得到查询结果,但相比于Pig和Hive,Dremel几乎是瞬时的。

Holzle表示Dremel可移执行多种查询,而同样的任务如果使用MapReduce来执行通差需要一个工作序列,但执行时间确实前者的一小部分。Dremel可在大约3秒钟时间里处理1PB的数据查询请求。

Armando Fox表示Dremel是史无前例的,Hadoop作为大数据运动的核心一直致力构建分析海量数据工具的生态圈。但就目前的大数据工具往往存在一个缺陷, 与传统的数据分析或商业智能工具相比,Hadoop在数据分析的速度和精度上还无法相比。但目前Dremel做到了鱼和熊掌兼得。

Dremel做到了“不可能完成的任务”,Dremel设法将海量的数据分析于对数据的深入挖掘进行有机的结合。Dremel所处理的数据规模的速度实在令人印象深刻,你可以舒适的探索数据。在Dremel出现之前还没有类似的系统可以做的像Dremel这样出色。

据Google提交的文件来看,Google从2006年就在内部使用这个平 台,有“数千名”的Google员工使用Dremel来分析一切,从Google各种服务的软件崩溃报告到Google数据中心内的磁盘行为。这种工具有 时会在数十台服务器上使用,有时则会在数以千计的服务器上使用。

Mike Olson表示尽管Hadoop取得的成功不容置疑,但构建Hadoop生态圈的公司和企业显然慢了,而同样的情况也出现在Dremel上,Google 在2010年公布了Dremel的相关文档,但这个平台还没有被第三方企业充分利用起来,目前以色列的工程团队正在建设被称为OpenDremel的克隆 平台。David Gruzman表示OpenDremel目前仅仅还在开始阶段,还需要很长时间进行完善。

换句话说即使你不是Google的工程师你同样可以使用Dremel。Google现在提供的BigQuery的服务就是基于Dremel。用户可通过在线API来使用这个平台。用户可以把数据上传到Google,并在Google基础设施中运行用户的查询服务。而这只是Google越来越多云服务的一部分。

早期用户通过Google App Engine构建、运行、并将应用托管在Google基础设施平台之上。而现今Google提供了包括BigQuery和Google Compute Engine等服务和基础设施,这些服务和基础设施可使用户瞬时接入虚拟服务器。

全球很多技术都落后于Google,而Google自身的技术也正在影响全球

相关文章

OpenStack的数据库开发基础
views 1612
前言 对于一个业务系统,如何高效、平稳地使用数据库是每一个开发人员都会遇到的问题,OpenStack 也不例外,以 OpenStack 的虚拟网络组件 Neutron 为例,其数据库涉及几百张表,需要维护数据库版本近百;一些表因为设计原因形成了很高的“热点”;因为 OpenStack 是分布式的...
详解大数据的思想形成与价值维度
views 1435
  比如经济上,黄仁宇先生对宋朝经济的分析中发现了“数目字管理”(即定量分析)的广泛应用(可惜王安石变法有始无终)。又如军事,“向林彪学习数据挖掘”的桥段不论真假,其背后量化分析的思想无疑有其现实基础,而这一基础甚至可以回推到2000多年前,孙膑正是通过编造“十万灶减到五万灶再减到三万灶”的数据、利...
云计算和物联网引领未来生活方式的变革...
views 1618
 云计算,一个和物联网一样让人坠入云里雾里的词汇让我们这些普通人对科学的神奇更加的膜拜!行业精英和商界领袖也一时半会也给不出一个明确而清晰的定义,各领域专家也为了使自己所在领域能够云环笼罩而从自身的角度来定义云计算。所以,云计算概念的定义可谓是百家争鸣,充分体现了云的包罗万象。但不管怎么争,云计算和...
盘点在“云”中的2014:那些改变与被改变的...
views 1699
如果说2013年,云计算还被国内普遍认为是一种“颠覆式创新”概念的话,那么2014年,则可以称之为国内云计算的起步之年。虽然没有像大数据、物联网等新概念那样被业界火热关注,但很明显的事实就是:不再大肆炒作概念的云计算真正开始落地、快速发展。不仅传统互联网公司、IT巨鳄进入云计算市场,越来越多的公司甚...
云计算技术如何帮助小企业成长
views 1366
如果你希望你的小企业成长,你需要面对各种各样的问题和负荷。你可能会出现资金短缺的问题,你努力想从资本支出(CapEX)转向为运营支出(OpEx),或者你的公司内部没有技术专家,那么这时就该发挥云计算的真正价值,来帮助你将自己的小企业快速提升到企业层面。 作为一个小企业主,你应该看到云计算可以让公...
谷歌技术”三宝”之谷歌文件系统(GFS) — 大数据云计算时代...
views 2561
虽然"The Google File System " 是 03年发表的老文章了,但现在仍被广泛讨论,其对后来的分布式文件系统设计具有指导意义。然而,作者在设计GFS时,是基于过去很多实验观察的,并提出了 很多假设作为前提,这等于给出了一个GFS的应用场景。所以我们自己在设计分布式系统时,一定要注意...
弹性计算云_华为云服务
views 2215
弹性计算云介绍:弹性计算云(ECC—Elastic Computing Cloud)是整合计算、存储与网络资源的一站式自助IT计算资源租用服务,按需使用、按需付费,包含云主机、云硬盘、镜像、弹性带宽、IP地址各种能力部件,支撑企业以零Capex来启动项目、快速部署、简化运维、聚焦业务。 购买方式:云...
企业信息化的关键成功因素
views 2270
 企业信息化不仅是一个庞大而复杂的系统工程,而且也有其自身的战略目标,大企业信息化的战略目标,企业必须分析影响企业信息化目标的关键成功因素。所谓关键成功因素,是指实现目标必须进行的事项或活动。本文在分析国内外企业的案例基础上,并结合实践,提出了企业信息化的关键成功因素和企业在实施过程中应树立的几个正...

Google后Hadoop时代的新“三驾马车”——Caffeine、Pregel、Dremel:等您坐沙发呢!

发表评论


读者排行