网易大数据平台的Spark技术实践-技术方案

时间:14-12-19 栏目:大数据 作者:爱说云网 评论:0 点击: 1,169 次

网易的实时计算需求

对于大多数的大数据而言,实时性是其所应具备的重要属性,信息的到达和获取应满足实时性的要求,而信息的价值需在其到达那刻展现才能利益最大化,例如电商网站,网站推荐系统期望能实时根据顾客的点击行为分析其购买意愿,做到精准营销。

实时计算指针对只读(Read Only)数据进行即时数据的获取和计算,也可以成为在线计算,在线计算的实时级别分为三类:Real-Time(msec/sec级)、Near Real-Time(min/hours)以及Batch(days)。 在批处理方面,MapReduce(MR)已经证明其为最有效的工具,随着MR的开源实现Hadoop为代表的大数据分析技术的普及,其在大处理方面的能 力已经得到认可,但是它更适用于对集群上大数据的批处理,并不适用于实时处理大规模流数据。为了满足实时性的要求,基于数据仓库所构建的流计算和实时性计 算框架也不断涌现,相关围绕MR的实时性优化技术也蓬勃发展,比较代表性的系统Google Dremel、Twitter Storm以及Yahoo S4等。

大数据的应用类型主要分为:批处理(Batch Processing)和流处理(Stream Processing)两方面。批处理是先存储后处理(Store-Then-Process),流处理是直接处理(Straight-Through- Processing),为提高商业智能的反映时间,目前广泛所采取的大数据处理框架,例如MR和Dryad所面向的主要是大规模数据分析,以批处理计算 为主,其实时性需求得不到满足。常用的应用有在线推荐、网页点击分析、传感网络、交通分析以及金融中的高频交易,对实时分析处理(Real Time Analytic Processing, RTAP)的需求越来显著,网易公司作为国内最大的门户网站之一,实时性也是公司目前互联网产品所应具备的重要属性。

网易大数据Spark技术应用

Spark技术代表未来数据处理的新方向,Spark是UC Berkeley AMP lab开源的类Hadoop MapReduce的通用并行计算框架,Spark基于MapReduce实现分布式计算,拥有Hadoop MapReduce具有的优点。不同于MapReduce的是,Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好 地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

在网易大数据平台中,数据存储在HDFS之后,提供Hive的数据仓库计算和查询,要提高数据处理的性能并达到实时级别,网易公司采用的是 Impala和Shark结合的混合实时技术。Cloudera Impala是基于Hadoop的实时检索引擎开源项目,其效率比Hive提高3-90倍,其本质是Google Dremel的模仿,但在SQL功能上青出于蓝胜于蓝。Shark是基于Spark的SQL实现,Shark可以比 Hive 快40倍(其论文所描述), 如果执行机器学习程序,可以快 25倍,并完全和Hive兼容。

图1和图2分别测试的计算能力和实时查询性能经过初步测试,在网易的实时计算平台,在大数据实时查询系统中,Impala在数据处理方面的速度可以 相比HIVE达到3倍到30倍的加速比,Shark可以相比HIVE达到 1.5到15倍的加速比,相比较Impala和Shark引擎,通常Impala会比Shark快一倍,这里可能会引出思考,既然Impala实时性如此 好,为何还需要Shark呢?

在设计大数据平台的时候,我们发现Impala性能不错,但是其对旧Hive的数据不兼容,因为目前的大数据应用中很多都是Hive的组织方式,而 Shark可以完全兼容旧的数据,因此在目前的数据结构中必须采用混合的数据处理模式。Hive和Impala会协同存在一段时间, Hive主要为Predefined Queries,并主要处理批处理相关作业,而Impala则处理交互的查询(AD-HOC Queries),使得大数据系统既支持OLTP,也支持OLAP,以达到实时分析处理(Real Time Analytic Processing, RTAP)的水平。

图1 网易大数据平台性能测试(Count/Sum/Avg操作)

图2网易大数据平台性能测试(Join/Ad-hoc查询操作)

总结

如果要评价2012到2013年度IT业界热词,非“大数据”一词莫属。ROI(Return On Investment)投资回报率已经演化为Return On Information,信息的回报率成为互联网公司的一个重要指标,如果所掌握的海量数据都是一堆“垃圾”,没有金矿去挖掘,那大数据也无从谈起,而提 高ROI的一个重要属性就是实时性,提高数据的反应时间需要技术做支撑和保障,网易作为中国顶尖的互联网公司之一,在大数据方面也是最早的先行者,特别实 时计算技术方面,公司很早就开始采用最新的技术来提供服务,例如Impala和Shark等,不难发现,网易的大数据系统可以灵活的选择计算实时引擎,总 体上系统在实时处理方面的能力可以提升2到15倍,这对于提升公司的生产效率有显著成效,在后续的工作中期望可以进一步提升实时级别,目前只能做到秒级, 能否达到毫秒级甚至微秒级别是将来的一个研发方向,总之对于海量数据计算、实时性方面有强烈需求的公司应用落地Spark是很好的选择。

参考资料

[1] Storm Distributed and fault-tolerant real time computation

[2] Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari. S4: Distributed Stream Computing Platform. 2010 IEEE International Conference on Data Mining Workshops (ICDMW).

[3] Cloudera Impala https://github.com/cloudera/impala

Reynold S. Xin, Josh Rosen, et al. Shark: SQL and rich analytics at scale. SIGMOD Conference 2013.

相关文章

大数据挖掘带动的变迁
views 1125
自大数据进入了人们的视线之后,它便逐渐成为人们普遍关注的焦点。大数据讲的是PB时代的科学,本质上大数据的挑战是PB时代的对科学的挑战,更是对包括数据挖掘在内的认知科学的挑战。那么,大数据时代怎么做数据挖掘呢?   在现今时代人们通常所说的大数据主要包括三个来源:第一是自然界大数据,也就是地球上的自然...
戴尔与贵阳市政府开展大数据及云计算领域合作...
views 1131
北京,2015年1月20日——戴尔今天宣布,与贵阳市政府签署合作备忘录,双方将在大数据、云计算等领域展开一系列合作,通过共建云联合实验室、搭建混合企业云平台以及开展相关大数据人才培训等方式,建立广泛而深入的合作伙伴关系。在贵阳市政府的大力支持下,戴尔将进一步拓展在中国企业级市场的覆盖,助力中国地方经...
10亿台移动设备的大数据表示移动互联网已是年轻人天下...
views 1828
昨天,国内独立第三方数据服务提供商TalkingData正式发布《2014移动互联网数据报告》。报告显示:2014年,我国移动智能终端用户规模达10.6亿,较2013年增长231.7%,增速远超全球同期市场。 TalkingData数据平台部总监陶京琪表示,报告数据都是基于TalkingData覆...
2015年度大数据发展十大预测
views 1338
《中国大数据技术与产业发展白皮书(2014年)》针对2015年度大数据发展做了十大预测,他们分别是: 一、结合智能计算的大数据分析成为热点,包括大数据与神经计算、深度学习、语义计算以及人工智能其他相关技术结合,成为大数据分析领域的热点。大数据分析的核心是从数据中获取价值,价值体现在从大数据中获取更...
云计算和大数据是一对孪生技术
views 1297
12月26日讯 26日下午2014全国智能物流云峰会暨湖南海驿智能物流园招商启动仪式12月26日在长沙举行。会上中科院云计算中心岳强博士以《物流云时代的变革》为题,做主题演讲,他表示,云计算和大数据是一对孪生技术,云计算中心是大数据的存储和处理基地 .   大家下午好!首先我把中科院研究中心的情况给...
大数据的价值
views 1289
  当我们关注那些在服务客户、增加业务机会方面具有巨大现有潜力的领域时,我认为,只有有意识地努力面向未来,并努力把重点放在那些有可能在未来几年走强的领域,我们才能够脱颖而出。大数据管理正是这样一个蕴藏着大量客户意向的领域,而支持这些意向的是客户投入真金白银的意愿。当今这个数字世界正产生着惊人的数据量...
详解大数据的思想形成与价值维度
views 1081
  比如经济上,黄仁宇先生对宋朝经济的分析中发现了“数目字管理”(即定量分析)的广泛应用(可惜王安石变法有始无终)。又如军事,“向林彪学习数据挖掘”的桥段不论真假,其背后量化分析的思想无疑有其现实基础,而这一基础甚至可以回推到2000多年前,孙膑正是通过编造“十万灶减到五万灶再减到三万灶”的数据、利...
美国大数据工程师面试攻略有哪些?
views 2459
大家好,我是来自硅谷的董飞,应国内朋友邀请,很高兴跟大家交流一下美国大数据工程师的面试攻略。 个人介绍 先做一个自我介绍,本科南开后,加入了一个创业公司kuxun,做实时信息检索,后来进入百度基础架构组,搭建了Baidu App Engine的早期版本,随后去Duke大学留...

声明: 本文由( 爱说云网 )原创编译,转载请保留链接: 网易大数据平台的Spark技术实践-技术方案

网易大数据平台的Spark技术实践-技术方案:等您坐沙发呢!

发表评论


读者排行