OpenStack的数据库开发基础

时间:14-12-29 栏目:云计算技术 作者:爱说云网 评论:0 点击: 1,566 次

屏幕快照 2014-12-23 上午11.21.51

前言

对于一个业务系统,如何高效、平稳地使用数据库是每一个开发人员都会遇到的问题,OpenStack 也不例外,以 OpenStack 的虚拟网络组件 Neutron 为例,其数据库涉及几百张表,需要维护数据库版本近百;一些表因为设计原因形成了很高的“热点”;因为 OpenStack 是分布式的,需要以最好小一点的代价保证操作时的一致性……最重要的是,每个人的数据库水平都不一样,怎么保证整个开源社区数百名提交者有一样的数据库操作风格,如何维护这些代码?

OpenStack 做为一个完全使用 Python 开发的项目,利用已有的丰富模块是开发时重要的中心思想之一,同时为了便于整个社区几百名背景不同水平不同的开发者协作,最终选择了 SQLAlchemy 和 Alembic 作为数据库开发的基础。

Why SQLAlchemy

在回答为什么使用 SQLAlchemy 之前,我们先盘点一下目前 Python 能用的 ORM 库,因为挑一个库在很大程度上实在挑社区,所以我把最新版的 release 时间也写出来:

  • Storm:最新版 0.20,release 于 2013 年,开发已经比较沉寂……对外键的更新、删除要求比较奇怪。
  • SQLObject:最新版 1.7.3,release 于 2014.12.18,开发历史久,目前活跃度不是很高。
  • Django’s ORM:来自于 Django,Django 内置,使用 Django 开发的话会很方便,但它不能脱离 Django 运行,也不能处理一些复杂的请求。
  • peewee:最新版 2.4.4 发布于2014.12.3,轻量方便,内置 SQLite、MySQL和PostgreSQL的支持。
  • PonyORM:最新版 0.6,release 于 2014.11.5。使用 AGPL 许可。有图形化的编辑器。非为大型应用设计。
  • SQLAlchemy:最新版 0.9.8,release 于 2014.10.13,企业级 API,设计灵活。加入了一些自己的概念,学习曲线较高。

总结一下,Storm 曾经应用比较广泛,但现在社区不再活跃,很难保证将来遇到问题能否交给社区解决,而且 Storm 对数据库架构同步处理的比较奇怪,还有频繁产生 DDL 操作 造成库级锁这些问题无法让人放心;SQLObject 也是一个很出名的 ORM 库,但与 SQLAlchemy 相比,后者效率更高,对一些高级特性的支持不如后者。

SQLAlchemy 的架构

  • Summary

SQLAlchemy 很有特色的一点就是它刻意被分为另种用法,就是 CORE 和 ORM,这是由它的架构决定的。

屏幕快照 2014-12-22 下午7.07.23

这样的架构的好处是带来了 Core 与 ORM 的解耦和,当我们需要高性能的 SQL 执行但又不想抛弃 SQLAlchemy 带来的session管理、连接池管理、数据库“中立”的语句编写等这些好处时我们可以直接用 CORE。直接用 CORE 是什么意思呢?我们看到架构里只有Rational Mapper在 CORE 之上,实际也确实如此,因为Schema、SQL Expression Language还在 CORE 内,所以使用 CORE 可以直接写纯 SQL 语句,我们称之为Raw SQL的写法,也可以用SQL Expression,后者因为是相当于写 Python 代码,所以可以带来更好地阅读性和可维护性,不过Raw SQL更灵活,所以在很复杂的语句面前Raw SQL就更占优势了。

再往下看这个图,我们可以看到 DBAPI 是由Third party libraries实现的,也就是说 SQLAlchemy 并没有提供直接连接数据库的功能,而是通过第三方实现:

屏幕快照 2014-12-22 下午7.07.30

SQLalchemy 对dialect支持很全,就以常见的 MySQL 为例,可以支持:
MySQL-Python、OurSQL、PyMySQL、MySQL Connector/Python、CyMySQL、Google Cloud SQL、PyODBC、zxjdbc for Jython,具体可以在 SQAlchemy 的dialects页面里查到。

这样有什么坏处呢,最明显的就是低效。因为传统 Python 解释器 CPython 的实现原因(主要是 C 的问题)长的函数调用栈会带来显著地性能问题。 由于路径过长,不可避免地导致运行时的缓慢。SQLAlchemy 花了很旧去缩短调用路径和通过 C 代码处理性能瓶颈,效果还不错,不过最好还是希望 PyPy 能够广泛流行起来,通过JIT缓解这个问题。

  • Engine

上面的图还是一张抽象程度比较高的,下面我细节点的介绍下 SQLAlchemy 的Engine。

屏幕快照 2014-12-22 下午7.07.38

对于使用者来说,Engine是核心,因为Connection、ResultProxy这些都是在Engine之后生成的,建立Engine则有两个重点,就是Pool和Dialect,前者是做连接池管理,后者则负责与 DBAPI 的沟通,如同其名字所示,负责“方言”与“普通话”的翻译。上图是以psycopg2为例的,使用 MySQL(PyODBC)也是类似的。

屏幕快照 2014-12-22 下午7.07.47

通过Dialect和ExecutionContext向开发者提供了一致的接口,前者处理了数据库的特性,比如使用 PostgreSQL 数据库其 Array 数据类型、schema、catalog等,后者处理psycopg2 DBAPI 的用法,比如 unicode 字符处理、服务端 cursor 的行为这些。

所以说,DBAPI中的cursor在 SQLAlchemy 中会被包装成ExecutionContext和ResultProxy来使用的。

  • Schema

当数据库的连接和交互处理完了,下一步就是提供非特定的表、字段的建立和操作方法。我们需要首先定义在数据库中的表和字段的定义,及他们之间的关系,也就是 Schema。对于数据库的使用来说,最基本的至少要有两个元素,那就是Table和Column,SQLAlchemy 使用了这两个名字来描述表和字段。多个Column组合成Table,然后一些 Table构成MetaData。Schema的结构设计主要来自于 Martin Fowler 撰写的 Patterns of Enterprise Application Architecture。

屏幕快照 2014-12-22 下午7.07.54

此外,Table和Column同时继承自sqlalchemy.schema和sqlalchemy.sql,使用时既可以在 ORM 的方式中使用,也可以以 SQL Expression Language 使用。在下图中我们可以看到Table从sqlalchemy.sql中“可以select from”的类继承,Coloumn从“可以用在 SQL expression”的类继承。

屏幕快照 2014-12-22 下午7.08.01

表达式树

SQLAlchemy 可以生成结构丰富的各种语句,这是一个词法分析树,核心结构是ClauseElement。

屏幕快照 2014-12-22 下午7.08.09

在 Python 中,得益于其 Magic Method,我们可以用__eq__、__ne__、__le__、__lt__、__add__、__mul__方便的重载运算符。以 Column 为对象的运算符由一个 mixin 类ColumnOperators实现重载。

编译

在这里,编译指生成 SQL 语句,主要由Compiled类完成,这个类有两个核心的子类,SQLComplier和DDLCompiler。SQLComplier负责像SELECT、INSERT、UPDATE、DELETE这些统称为DQL (data query language) 和 DML (data manipulation language)的操作符的渲染,DDLCompiler负责CREATE和DROP,一般称为 DDL。此外,还有一个类TypeCompiler处理某些数据库的特殊语法。

屏幕快照 2014-12-22 下午7.08.18

Compiled的子类定以了一系列的 visit 开头的方法,每一个都源于一个ClauseElement的特定子类。然后Compiled对象维护名字、结合参数和子查询,最终是为了生成一个 SQL 查询语句。

屏幕快照 2014-12-22 下午7.08.25

Migration

我们希望能像管理代码一样管理数据库,可以像 git 一样给数据库定义版本、升/降级、打标签,可以么?答案就是 Alembic。

Alembic 的作者与 SQLAlchemy 是同一人,使用起来有点像简化版的 git,在 db 目录里执行 init,就可以自动生成基本结构和配置文件。配置妥当后使用 alembic 可以生成一个数据库模版,作为这个“版本”的数据升/降级文件,SQLAlchemy 会自动生成其“版本号”和历史关系我们所需要做的便只是用调用 SQLAlchemy 和 Alembic 提供的 sa 和 op 定义数据库表即可。

有同学可能问我在 SQLAlchemy 上做过一模一样的定义了,是不是能不要让我重复劳动啊?或者在我给 SQLAlchemy 做完修改后 Alembic 能不能自动“感知”到这些修改然后自己生成版本文件啊?答案是可以的,配置好元数据来源后,Alembic 可以用–autogenerate自动生成相应的版本文件。

相关文章

国务院推六项政策扶持小微企业
views 1561
国务院总理李克强9月17日主持召开国务院常务会议,部署进一步扶持小微企业发展推动大众创业万众创新,决定全面建立临时救助制度、为困难群众兜底线救急难。  李克强说,今年经济下行压力依然很大,特别是七八月份以来增速放缓,但就业仍然实现了稳定增长。他说,“这里既有服务业增长的因素,但更重要的,还是通过改革...
云计算使中小企业放手信息化建设
views 1816
中小企业在经济发展过程中是一支非常重要的力量,随着中小企业规模和实力的持续增长,虽然大多数中小企业仍对信息化投资较为谨慎,但对信息化的日益重视和投资的持续增加表现仍较为突出。在不同行业,中小企业的信息化程度也存在一定差别。 XTools副总裁 谢亿民 高新技术业中小企业信息化处于初级阶段 为了深入...
典型的云迁移案例与迁移复杂性详解
views 1428
 当你的合作伙伴把他们客户的业务应用程序移至云时,他们也在进步,学习进一步增加获得业务机会的技能和方法。     希望使用云作为运行他们部分或全部应用程序的计算平台的IT部门必须首先把那些应用程序迁移至云。这项任务却是知易行难的,因此很多企业把目光正在转向渠道合作伙伴以寻求帮助。但是...
以云计算的速度部署云计算基础设施
views 1332
以云计算的速度部署云计算基础设施 为了以最终用户所需要的速度部署新的基础设施,企业IT部门需要拥有基本模块架构和真正DIY功能的可视化自动化工具。 云计算的两个主要价值就是速度和灵活性。云计算编排和自动化工具有望让IT部门大大加快运营速度,并且成为更具竞争力的服务型部门。虽然一旦虚拟化系统落实到位...
Google后Hadoop时代的新“三驾马车”——Caffeine、Pregel、Dremel...
views 1783
Google在2003年到2004年公布了关于GFS、 MapReduce和BigTable三篇技术论文,这也成为后来云计算发展的重要基石,如今Google在后Hadoop时代的新“三驾马车”—— Caffeine、Pregel、Dremel再一次影响着全球大数据技术的发展潮流。 Mike Ols...
微软云服务占有率升至10% 缩小与亚马逊差距...
views 1329
腾讯科技讯 12月13日,最新数据表明,微软云服务Azure与亚马逊云服务AWS的市场差距正在缩小,但微软的上升势头也面临挑战。 去年,软件制造商K2停止使用亚马逊云服务AWS,转向微软Azure。K2首席执行官阿德里安•范•维克(Adriaan van Wyk)曾表示,Azure大部分时间让他感到...
云计算技术如何帮助小企业成长
views 1259
如果你希望你的小企业成长,你需要面对各种各样的问题和负荷。你可能会出现资金短缺的问题,你努力想从资本支出(CapEX)转向为运营支出(OpEx),或者你的公司内部没有技术专家,那么这时就该发挥云计算的真正价值,来帮助你将自己的小企业快速提升到企业层面。 作为一个小企业主,你应该看到云计算可以让公...
移动互联网思维到底是个啥玩意
views 1746
移动互联网来势凶猛。 移动互联网带来的改变仿佛发生在一夜之间。传统的大众传媒发现受众正在大幅度减少,电视开机率下降、都市报刊亭关张、杂志订户锐减、出版业萧条,甚至进入21世纪以来一直红火的广播电台也感受到了寒意,交通一天比一天堵,但听广播的人数却在减少,大堵车的时候,司机也不听广播了。 这些行业的受...

声明: 本文由( 爱说云网 )原创编译,转载请保留链接: OpenStack的数据库开发基础

OpenStack的数据库开发基础:等您坐沙发呢!

发表评论


读者排行