大数据如何解决城市计算的基本框架及核心问题

时间:14-12-15 栏目:大数据 作者:爱说云网 评论:0 点击: 1,728 次

    编者按:近年来,随着感知技术和计算环境的成熟,各种大数据在城市中悄然而生。城市计算就是用城市中的大数据来解决城市本身所面临的挑战,通过对多种异构数 据的整合、分析和挖掘,来提取知识和智能,并用智能来创造“人—环境—城市”三赢的结果。微软亚洲研究院主管研究员郑宇从城市计算的基本框架及核心问题、 典型应用、主要技术等方面对城市计算研究进行了全面而详细的分析,让我们一睹为快!

    作者:微软亚洲研究院研究员 郑宇

    城市计算的基本框架及核心问题

    基本框架

    城市计算的基本框架包括城市感知及数据捕获、数据管理、城市数据分析和服务提供(如图1)。与自然语言分析和图像处理等“单数据单任 务”系统相比,城市计算是一个“多数据多任务”系统。城市计算中的任务包括改进城市规划、缓解交通拥堵、保护自然环境、减少能源消耗等。而一个任务又需要 同时用到多种数据。例如,在城市规划的设计过程中,需要同时参考道路结构、兴趣点分布、交通流等多种数据源。

核心问题

    城市计算是一门新兴的交叉领域,涵盖面较广。从计算机科学的角度来看,其核心的研究问题主要包括以下4 个方面:

    城市感知 如何利用城市现有的资源(如手机、传感器、车辆和人等),在不干扰人们生活的前提下自动感知城市的韵律,是一个重要的研究课题。如何从大量的传感器和设备 中高效而可靠地收集、传送数据将给现有的传感器网络技术带来挑战。此外,人作为传感器参与到城市感知过程是一个新概念。例如,当一场灾难发生后,有些用户 会在社交网络上发布消息或上传照片。这些用户其实就是在感知发生在他们身边的事情。用户在出入地铁站时的刷卡行为也间接帮助我们感知了地铁系统的拥挤和人 们的出行。人赋予了传统传感器强大的感知能力和前所未有的灵活性,但产生的数据更加随机、无序(如微博上的文字),数据的产生时间也变得难以预测、不可 控,这给数据的收集和解析带来了挑战。

    海量异构数据的管理 城市产生的数据五花八门,属性差别很大。例如:气象是时序数据,兴趣点是空间点数据,道路是空间图数据,人的移动是轨迹数据(时间+ 空间),交通流量是流数据,社交网上用户发布的信息是文本或图像数据。如何管理和整合大规模的异构数据是一个新的挑战。尤其是在一个应用中使用多种数据时,只有提前建立起不同数据之间的关联,才能使后面的分析和挖掘过程变得高效、可行。

    异构数据的协同计算 这部分包括三个方面:(1) 如何从不同的数据源中获取相互增强的知识是一个新的课题。传统的机器学习往往基于单一数据,如自然语言处理主要分析文本数据,图像视觉主要基于图像数据。在城市计算的很多应用中,对不同性质的数据一视同仁,其效果并不理想。(2) 在保证知识提取深度的同时,如何提高对大数据的分析效率,从而满足城市计算中众多实时性要求较高的应用(如空气质量预测、异常事件监测等),也是一个难题。(3) 数据维度的增加也容易导致数据稀疏性问题。当数据规模达到一定程度,简单的矩阵分解算法都变得难以执行。

    虚实结合的混合式系统 城市计算常常催生混合系统,如云加端模式,即信息产生在物理世界,通过终端设备被收 集到云端(虚拟世界)分析和处理,最后云再将提取的知识作为服务提供给物理世界的终端用户。数据在物理和虚拟世界中来回穿行,从分散到集中,再到分散。这 对系统的设计和搭建提出了更高的要求。基于浮动车数据的快速行车路线设计以及城市异常事件的监测都是典型的混合式系统。

城市计算的典型应用

城市规划

    城市拥堵在一定程度上突显了现有道路网的设计已经不能满足不断发展的城市交通流的需求。如图2(a) 所示,利用高速和环路等主干道将城市分割成区域,然后分析大规模车流轨迹数据在不同区域之间行驶的一些特征,便可找到连通性较差的区域对,从而发掘现有城市道路网的不足之处。图2(b) 给出了基于北京市3 万多辆出租车3 个月轨迹数据的分析结果。这些结果可以作为制定下一版交通规划的参考。同时,通过对比连续两年的检测结果,可以验证一些已经实施的规划(如新建道路和地铁)是否合理。

相关文章

云计算之Docker:颠覆者还是昙花一现
views 1621
在云计算产业界,一场由一个技术掀起的革命正在悄悄上演:名不见经传的小公司横插进IT大佬构筑的云生态产业链,各路IT企业纷纷拥抱该技术并接纳该公司,云计算的构建方式和实施方式也即将发生或多或少的改变。这个技术就是Docker,这个公司便是dotCloud。 DotCloud本是家新创业小公司,基本无...
Google后Hadoop时代的新“三驾马车”——Caffeine、Pregel、Dremel...
views 1683
Google在2003年到2004年公布了关于GFS、 MapReduce和BigTable三篇技术论文,这也成为后来云计算发展的重要基石,如今Google在后Hadoop时代的新“三驾马车”—— Caffeine、Pregel、Dremel再一次影响着全球大数据技术的发展潮流。 Mike Ols...
云计算在企业成功落地三条件
views 1463
 云计算在企业成功落地三条件    针对上述三个阻碍,奉继承认为,云计算在企业成功落地必须满足以下三个条件。一、要有支持云计算的IT治理模式和企业架构方法;二、具备SOA架构的PaaS平台,以支持企业的业务、应用、数据的整合,实现应用的灵活性和消除信息孤岛,并实现企业内各业务单元的个性化业务的应用开...
芝麻开门 大数据征信体系揭秘
views 2655
1月28日,蚂蚁金融服务集团(下称“蚂蚁金服”)旗下的芝麻信用首次测试个人征信系统,这也是1月5日央行发布允许8家机构进行个人征信业务准备工作通知后,首家推出该系统的公司。据21世纪经济报道记者了解,在1月5日央行发布通知后,蚂蚁金服便迅速注册公司,组建团队。其骨干成员大部分为数据科学 家,同时开始...
基于Docker的B2B服务思考:Docker到底解决了什么问题...
views 1764
我很喜欢Docker,它容易使用并且速度快,它真的很棒,以至于我每天都能看到与它有关的应用。但是话又说回来,Docker究竟解决了什么实际问题?稳定的环境?配置管理?高性价比的虚拟化? 我认为Docker解决了其它的问题。 我之前公司的主营业务是为客户提供B2B( business-to-busi...
养活百亿人,硅谷是如何介入农业的
views 1158
12月15日消息,一些新兴行业背后的投资商和企业家已经开始把大量的财力和科技人才投入到了世界上最古老的行业,也即农业当中。他们野心勃勃,想要确保到2100年的时候,地球人有足够的粮食吃。人们预期,届时世界人口将达到100亿。为达次目的,他们不仅不会损毁自然生态,而且一路下去还会赚个盘满钵满。 硅谷...
浅淡私有云存储:高效、可靠、安全的存储池...
views 1492
由于众多客户部署技术的模式由内部部署转为外部部署,亚马逊、谷歌和微软等大公司纷纷投入巨资,构建公有云存储解决方案。 云存储服务可以节省成本,因为用户没必要购买及管理自己的基础设施。它还让用户可以提高灵活性,减少存储容量。 但公有云存储并不适合所有类型的数据;出于安全、法律或合规方面的原因,许多企...
移动互联时代CFO变身记
views 1784
美国零售巨头Target在邮件中向一位中学女生推荐孕婴用品及其优惠券,被其父亲强烈质疑与抗议,在获得道歉后,父亲却发现女儿真的怀孕了。Target这个广为流传的故事,被认为是其在大数据营销等方面精密的探索。 不过在客户身上搜集信息用于营销决策,也可能存在数据安全的风险。2014年1月,Target公...

声明: 本文由( 爱说云网 )原创编译,转载请保留链接: 大数据如何解决城市计算的基本框架及核心问题

大数据如何解决城市计算的基本框架及核心问题:等您坐沙发呢!

发表评论


读者排行